THE
GLOBAL
SUPPLIER
QUALITY
ASSURANCE SYSTEM

SUPPLIER PRE-PRODUCTION QUALITY
EL 29003

Edition 2007
Revision A
Preface

The purpose of this document is to communicate to current and potential suppliers, the Global Supplier Pre-Production requirements.

Purchased materials/components constitute a major proportion of the products manufactured by Electrolux, and, consequently the quality of these materials/components is of utmost importance for the overall quality of our products.

Electrolux shall have the assurance that suppliers have an effective Pre-Production management system which will guarantee that the product is fully reviewed and planned, and will be controlled and consistently conform to all requirements.

We shall therefore be careful in selecting suppliers, using only those that can demonstrate the full commitment and ability to comply with the requirements of this document, and to support this through the quality of products and services provided.

This document summarises the Supplier Pre-Production Process, and covers the methods used in conjunction with the supplier, to ensure the eventual delivery of the correct quality of part, as and when required.

Signed Dated

Francois Van Caeyzeele Sture Ögren Hans Stråberg
Senior Vice President Senior Vice President President
Purchasing Quality and CEO
Electrolux Electrolux Electrolux

STATEMENT OF CONFIDENTIALITY

Electrolux gives its assurance that any information provided by suppliers, will be treated as totally confidential. Electrolux and its advisors who are bound by a confidentiality agreement, will have sole access to this information.
CONTENTS

1.0 Reference Documents

2.0 Supplier Commitment
 2.1 Supplier Responsibility
 2.2 Continuous Quality Improvement and Quality Targets
 2.3 Right First Time
 2.4 Process Capability and Statistical Process Capability
 2.5 Reliability Testing

3.0 Supplier Pre-Production Quality Planning

4.0 Quality Assurance Plan Elements

5.0 Product Identification

6.0 Successful

7.0 Appendix A Quality Assurance Plan
 Quality Assurance Plan Rationale

1.0 Reference Documents

ISO9001:2000, ISO/TS16949, QS-9000 or equivalent - Quality Systems
ISO/DIS8402-Quality Management and Quality Assurance Vocabulary

The Global SQA is defined through the following documents:

EL29000 - GSQA Policy and Definitions
EL29001 - Supplier Profile Questionnaire
EL29002P - Preliminary Supplier Process Audit Questionnaire
EL29002A - Supplier Process Audit Questionnaire
EL29003 - Supplier Pre-Production Quality Assurance
EL29005 - Supplier/Commodity Quality Statusing Process
EL29005A - Supplier/Commodity Purchasing Status
 Incl. On Hold Process
EL29006 - Supplier Self Certification Requirements
EL3000 - Supplier Requirements relating to Ongoing Supply and Evaluation

These documents are supported by:

The Integrated Product Development Process (IPDP) and Product Creation Process (PCP)
The Purchasing Process Procedures and Tools
2.0 Supplier Commitment

2.1 Supplier Responsibility
Each supplier, or potential supplier, is responsible for the quality of the product they deliver. The ability to achieve satisfactory product quality is a company-wide function which includes all the functional areas within the suppliers organisation. This responsibility rests with Chief Executives and their delegated representatives.

It is required that each supplier establish and maintain, a quality management system, to achieve full compliance with regard to design, development, manufacture and testing of products. The supplier is responsible for ensuring that his sub-contractors also meet these requirements.

2.2 Continuous Quality Improvement and Quality Targets
It is our ultimate goal, to achieve "zero defect" status, and it is the responsibility of the supplier to ensure that there is continual product and process improvement towards that goal. Quality and reliability targets will be agreed with the supplier, and each supplier will be monitored against these targets. These targets will be upgraded at regular intervals, to match customer expectations.

2.3 Right First Time
Instead of having to inspect, and possibly reject, goods upon receipt, it is much more profitable to make it "right first time". Therefore, in achieving this objective, the emphasis is on defect prevention rather than on defect detection. Suppliers will establish internal systems to improve process levels to a target of 100% "right first time".

2.4 Process Capability & Statistical Process Control
Only by having "capable" processes, can a supplier continuously meet the "right first time" target all of the time. Suppliers therefore have to prove capability continuously. This necessitates the use of Statistical Process Control for those features which are deemed process critical.

2.5 Reliability Testing
Where required by specification, the supplier shall provide for, and carry out, reliability testing according to the specification.
3.0 SUPPLIER PRE-PRODUCTION QUALITY PLANNING

When a potential supplier is chosen, it is incumbent on the supplier to review the design and process at the concept stage, with a view to optimising these to achieve the desired Functional, Quality, Reliability, Applicability, Safety and Cost goals. A customer/supplier interface is necessary at the concept stage to achieve this. The supplier is then required to provide a "Quality Assurance Plan", together with their offer.

The Quality Assurance Plan lists various items and activities which are deemed necessary to be accomplished to ensure the success of such a venture. Only capable processes will consistently produce good product, and the methodology concentrates on this aspect of quality. The supplier should keep in mind that this document will be utilised to make final sourcing decisions, and therefore must ensure that finished, complete, Quality Assurance Plans exist for all parts contracted.

The Quality Assurance Plan itself is shown as Appendix A, and guidance on each activity is listed on the following pages.

Minimum elements of the overall plan that a supplier must always submit, are:-

- Feasibility Study
- Contract Review Included Quotation
- Process FMEA
- Process Control Plan with Process Flowchart
- Measurement Equipment R & R
- Preliminary Process Capability Study
- Process Capability Study
- Material Handling Plan
- Reliability Test validation (if applicable)
- Regulatory Approval (if applicable)
- Initial Sample with Approval
- Quality Assurance Plan (Overall)

The "validity" of the other elements is dependent on each individual part, and will be decided at project start. The above elements are part of the overall Global Supplier Quality Assurance Certification Scheme, and are scored as to their satisfactory completion.

The Quality Assurance Plan has time embedded in it, in that the various elements are submitted at specific times as a project progresses. These elements are noted on the Quality Assurance Plan in Appendix A.

In most cases, the elements within the Quality Assurance Plan, will require documented evidence to support them.

If the supplier requires a more detailed explanation about the specific elements contained in the "Quality Assurance Plan", this can be provided by the Global Quality Assurance Department.
4.0 QUALITY ASSURANCE PLAN ELEMENTS

The section numbers used below, refer to items as listed in the Quality Assurance Plan, See Appendix A

FEASIBILITY

- Quality Assurance Plan
 The form "Quality Assurance Plan" shown in Appendix A, shall always be provided, and this shall be initiated at the latest, when the offer is made.

 Any deviation from the schedule must be requested in writing to the originator of the purchase order.

 All activities must be completed, supported by the necessary documentation, and approved.

1. Feasibility Study
 The feasibility study is a systematic analysis of drawings, technical regulations, standards and other purchasing documents, to monitor and assure the produceability for each characteristic, and to give alternative designs where suitable, and/or necessary. See also Design Review.
 The quality requirements for the part stated in PPM for line rejects and field failures, shall be obtained. The study must be documented and attached to the offer when submitted, with notification of all concerns and possible improvements found. A lack of concerns and improvements will be interpreted as if consistent, "zero defect" production to specification is possible.

2. Contract Review incl. Quotation
 The Contract Review is to ensure that the purchasing documents and supplier's quotation are complete in scope and content and comply with the requirements and correlates.
 The purchasing documents, including any enclosures, should fully and clearly specify the proposed part or commitment, the proposed order quantity, type of packaging ("bulk" packaging or unitisation), order frequency and delivery times.
DESIGN

3. Design FMEA
A Design FMEA mainly applies only when the supplier is the design owner. The risk must be quantified and classified, and high risk prevented where after the failure risks are updated.

4. Design Review
The design review will normally take place before the offer. The design review focuses on how the design and process can be optimised to fulfil the requirements at the lowest possible product cost, and the lowest possible investment. The requirements can be regarding:-

- Quality
- Delivery
- Flexibility
- Short development time
- Technological requirements
- Possibility to change the design
- Transportability
- Packaging
- Serviceability
- Design for manufacture

5. Verification Test
The verification tests shall ensure that the designs involving new, or as yet un-proven technologies, are feasible.
PROCESS CONTROL

6. Process FMEA
A process FMEA is an analysis of potential failure risks in the manufacturing process of the product. The whole process shall be analysed by means of FMEA techniques, to detect potential failure risks and weaknesses in the process. The risks must be quantified and classified so that adequate controls and safeguards are in place to prevent failure.

7. Control Plan (Process)
The necessary inspection and test operations shall be defined, based on the FMEA analysis and process capability indications that show a necessity for process control and monitoring. The plan should include the following:-

1. Process identification
2. Control characteristic
3. Gauging data
4. Method of control
5. Frequency of inspection
6. Reaction plan to non-conformances

A Flow Chart of these activities is mandatory.

8. Tooling Programme
A time schedule for the order, delivery and qualification of production tools and other equipment shall be created. This schedule shall include the time to make the necessary adjustments and prove process capability prior to producing approved initial samples. (NB. Capability of equipment should be to a higher capability index than the parts which it has to produce).

9. Measurement/Test Equipment
Activities to ensure the adequacy of proper measurement and gauging will be defined, documented, and quantified, and must be part of a comprehensive calibration and recall system. Repeatability and Reproducibility (R&R)
These determine the extent of the measuring error which the combination of equipment and operator create when working in unison. The following percentages define the targets for R & R:-

< 20% gauge R&R is acceptable
>21% ÷ 30%< gauge R&R requires approval
>31% gauge R&R is unacceptable

10. Work Instructions
If a work instruction is deemed necessary to ensure the product quality, it shall be produced for each such work operation. Inspection instructions are a specific form of work instructions.
11. Inspection Instructions
It shall be necessary to produce test instruction for all testing operations. As a minimum, this shall define the test operation, methods, frequency of test, sample size and equipment. Normally this is included in the Control Plan (Process).

12. Material Handling
To prevent damage or misuse of the product, an analysis of the handling of the product - from raw material or components, to finished part, and during the transport, - shall be done. A labelling system for part identification shall be created. All risk of damage shall be eliminated throughout the storage and distribution chain, and up to the point of usage.

13. Special Processes
Where a process or processes cannot be fully verified by testing afterwards, or controlled with statistical methods, the testing of different combinations of process parameters shall be carried out, and the parameter combinations testing shall be documented to ensure that future production of the products shall meet product specification.
Such parameters can be pressure, time, velocity RPM, flow, viscosity, concentration, mixing conditions etc.
Examples of special process are: welding, casting, surface treatment, mixing.

14. Subsuppliers’ Quality Assurance
When an Electrolux supplier purchases materials, equipment or components from subsuppliers, he shall evaluate these subsuppliers according to procedures in his Quality Management System, to ensure the quality of the purchased goods. For this purpose the supplier should prove, upon demand or audits, the effectiveness of this Management System and be able to show results and activities from the evaluations.
Subsuppliers, critical to the Electrolux purchased goods, shall also be asked to develop, follow and document a Quality Assurance Plan. A critical subsupplier can not be exchanged without approval from Electrolux.
15. Capability Studies (Ppk and Cpk)
Potential Process Capability Ppk Studies shall be performed on all critical process characteristics. The target is to achieve a minimum potential process capability of 1.67 Ppk. The capability study shall be determined only when all external causes of variation have been removed. (i.e. operators, equipment, materials) and environmental effects are consistent. The study must be performed using normal production and tooling equipment. Equal representation from all cavities or tools must be part of the study, and the sample size must be a statistically valid representation of the process output (50 cycles minimum). Adherence to these requirements shall assure long term process capabilities meet the requirements with normal process monitoring.
Ongoing process capability studies shall be performed on all critical process characteristics, aiming to exceed a minimum process capability performance of 1.33 Cpk. The process capability shall be determined over an extended period of time, and under normal operating conditions. (i.e. different - operators, material batches, equipment, environmental conditions, and workshifts). Standard data collection and statistical tools (i.e., variable and attribute control charting) should be utilised. Again, 50 results would be expected in the study.

16. Statistical Process Control
All the critical process parameters should be monitored on an ongoing basis, using Statistical Process Control (SPC), and the process controlled accordingly. Where the process is fully understood, it is better to control specific process parameters, rather than the individual part parameters.

17. Qualification Tests and Samples
 a) Off-Tool Sample Testing (First Off Sample).
 Off-tool sample testing is aimed at demonstrating that the combination of material and production concepts results in a part which conforms to the specification in all respects.
 b) Technical samples
 Technical sample testing is aimed at verifying the technical requirements and current regulatory requirements relating to that part.
 c) Full Run Test
 The full run test is intended to verify that the overall capability and capacity of the production process meets the specified requirements.
 The parts taken out of the test can well be used both as initial samples and for validation tests.

18. Initial Samples
The initial sample review process, consists of dimensional measurements, material testing, and all requirements set forth in the product specifications. Since initial samples are used to verify the production process, they must be produced at the production site, using the production tooling, process, materials, operators and speeds/feeds/cycle times. The initial samples must be accompanied by the complete layout and test report. The report must include a full dimensional layout for at least one part per cavity or tool. For characteristics identified as critical, the process capability study information must also be included.

Initial samples must be submitted to verify characteristics that could possibly be affected by the following:-

1. New or changed part
2. New or changed process
3. New or changed tooling, moulds or equipment
4. New or changed materials
5. New or changed location of manufacture

The reason for a supplier sending initial samples must always be given. This shall be the case, even if the samples were not ordered. Initial samples must be appropriately labelled and packaged to prevent damage. The Purchase representative will supply the proper label. All samples should be sent directly to the Purchase representative, unless notified otherwise.

Initial samples not meeting specification requirements should not be submitted without the written approval of the originator of the purchase order.

Divisional Q.A. will verify initial samples submitted, and ensure that measurement correlation is acceptable. In the event that there is a significant difference in the measured values, immediate root cause and resolution must occur. Appropriate personnel at the supplier location will be notified accordingly.

Under no circumstances should normal production begin without the written approval of initial samples, or approval from the originator of the purchase order. Some commodities may require exemption or deviation.

Initial samples shall be sent separately from production deliveries, and shall always be labelled "initial samples" in a very visible way. These shall always be delivered to the Purchase department.

Initial samples and reports will be discretionally kept for as long as is necessary, by whomsoever has the design authority. Each measured part shall be sequentially identified, and cross-referenced to the actual measured result. The raw material used must be identified by a material analysis or certification.

19. Reliability Testing
Upon agreement, the supplier shall provide the necessary resources to verify design intent and conformity to all requirements set forth by engineering specifications. This is to ensure that the product meets all reliability life requirements, as stated in the design verification and qualification plan. The appropriate engineering or reliability designates must approve the conditions of test and verification.
20. Regulatory Approval
If the product requires regulatory approval of any type, e.g., Safety, EMC etc. then it shall be submitted for the necessary type approval, and approved.

21. Safety Critical Part
Special demands such as traceability and type testing, shall be applied when a part has been designated a safety critical part.
Type approval ensures that the product meets all applicable regulatory, agency or statutory requirements.
22. Final Product Audit
Final product audits, based on an established sampling plan, must be carried out, to ensure that the quality system is efficient from a customer point of view, regarding finish, safety, function, performance and product packing, and to measure the effectiveness of the system in place. These audits must be organised independently for other quality activities within the company. Product audits must be carried out on approved parts ready for delivery, and the judgement must be quantified.
Supplier statistical audit data can be requested at any time, prior to shipment. Audit criteria may be relaxed or tightened, based on results obtained.
Suppliers are advised to retain all data pertinent to validation, verification and ongoing quality and reliability, for at least 10 years.

23. Training/Product Knowledge
Training of the personnel shall be performed, to ensure full knowledge of requirements and function of the product, as well as routines and instructions for the production and handling of the product.

24. Preventative Maintenance
Systematical preventive maintenance shall be introduced, to ensure a continuous process availability and capability.
This preventive maintenance shall be based on the follow-up or documented experience of the process or process ongoing capability monitoring, downtime and spares requirement.

The sections of the QA plan above are dealt with in much more detail in the Quality Assurance Planning User Manual.
The manual also refers to various documents that can be used to assist with the process.
This manual can be found in the C-T PMH 1.0.0 Lotus Notes database.

5.0 Product Identification
All parts submitted for approval, should be suitably packaged and identified.
Typical labels used in the pre-production phases are:-

A. Prototype Parts
B. First Off Tool Samples
C. Initial Samples - Preliminary Process Capability
D. First Production Samples - Process Capability
6.0 SUCCESSFUL

The Quality Assurance Plan will be effective from an introduction date still to be decided. The Quality Assurance Plan will be effective in its entirety on all new critical parts conceived from that date onwards.

New Parts
For a Quality Assurance Plan to be recorded as successful, the following have to be in our possession, and approved by us:
- The Quality Control Plan with Process Flowchart
- The Capability Studies showing the following for Critical characteristics
 - Ppk • 1.67
 - Cpk • 1.33
- The Reliability Report and
- The Regulatory Approval Report - if applicable

Existing Parts
The following decision has been taken with respect to all parts or families of parts already being purchased by Electrolux. In effect, the successful Quality Assurance Planning of these will be measured through the "Ongoing Evaluation" of the supplier. Since the base information for Ongoing Evaluation is accrued at specific Part Number or Family level, the success or otherwise of the Quality Assurance Planning will be shown there.
If the Ongoing Evaluation Quality result for a part or family is shown to be good, then this will be recorded as a successful quality plan. If the Ongoing Quality for a part or family is not shown to be good, then the Quality Control Plan will be deemed to have failed and the quality plan shall require to be reviewed and updated with suitable corrective action, and the capability studies reviewed.
I.e. existing parts with problems will be treated similarly to new conceived parts.
APPENDIX A

SUPPLIER QUALITY ASSURANCE PLAN

<table>
<thead>
<tr>
<th>Item</th>
<th>Activity</th>
<th>Person Responsible</th>
<th>Ready at latest required when</th>
<th>Week No.</th>
<th>PDF check **</th>
<th>Approved result</th>
<th>Comments</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q.A. Plan</td>
<td>A</td>
<td></td>
<td>CP‘00*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Feasibility study</td>
<td>A</td>
<td></td>
<td>CP‘00*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Contract Review incl. quotation</td>
<td>A</td>
<td></td>
<td>CP‘00*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Design - FMEA</td>
<td>E</td>
<td></td>
<td>CP‘00*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Design review</td>
<td>E</td>
<td></td>
<td>CP‘00*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Verification test</td>
<td>E</td>
<td></td>
<td>CP‘00*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Process - FMEA</td>
<td>C</td>
<td></td>
<td>CP‘1*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Control plan incl. Flow Chart</td>
<td>C</td>
<td></td>
<td>CP‘1*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Test programme</td>
<td>C</td>
<td></td>
<td>CP‘1*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Measuring/Test equipment</td>
<td>C</td>
<td></td>
<td>CP‘1*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Work instruction</td>
<td>C</td>
<td></td>
<td>CP‘1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Inspection instruction</td>
<td>C</td>
<td></td>
<td>CP‘1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Material handling</td>
<td>D</td>
<td></td>
<td>CP‘1*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Special processes</td>
<td>C</td>
<td></td>
<td>CP‘1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Subassemblies Quality Assurance Plan</td>
<td>D</td>
<td></td>
<td>CP‘1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Capability study</td>
<td>D</td>
<td></td>
<td>CP‘2*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Statistical Process Control</td>
<td>D</td>
<td></td>
<td>CP‘2*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Qualification tests and samples</td>
<td>D</td>
<td></td>
<td>CP‘2*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Initial samples</td>
<td>D</td>
<td></td>
<td>CP‘2*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Reliability testing</td>
<td>E</td>
<td></td>
<td>CP‘0*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Regulatory approval</td>
<td>E</td>
<td></td>
<td>CP‘3*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Safety critical part</td>
<td>E</td>
<td></td>
<td>CP‘3*</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Final product audit</td>
<td>E</td>
<td></td>
<td>CP‘5*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Training/Product knowledge</td>
<td>E</td>
<td></td>
<td>CP‘5*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>preventative maintenance</td>
<td>E</td>
<td></td>
<td>CP‘5*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) To be agreed with Electrolux

**) Information for AB Electrolux:

- A: Ready at Contract Review
- B: Ready at Design Reviews 1,2
- C: Ready at Design Reviews 3,4
- D: Ready with delivery of approved initial samples
- E: Ready before production delivery start

*** This activity is mainly applicable when the supplier has design control of the part.

All above identified activities must be carried out in accordance with the agreed requirements and with approved results.

Signatures of responsible persons:

Supplier: ____________________________ AB Electrolux: ____________________________

Date: ____________________________ Date: ____________________________
Quality Assurance Plan - Rationale

Supplier: Supplier Name
Location: Address
Date: Date commenced
Issue: Issue Level of Plan
Page 1 of: If the Plan is extended
Responsible: Who is responsible at Supplier
Who is responsible at Electrolux
Parts Involved: Part Description
:Electrolux Part Number
:Electrolux Drawing Number
:Issue - Revision Level
:Supplier Part Number
:Issue - Revision Level

Columns

Valid for this Project - The participants in the project meetings can decide which of the constituent parts of the Quality Assurance Plan are relevant to that particular part. Those which are ticked (□) are relevant. Those () are ignored. For example; Regulatory Approvals or Reliability will not be valid for every part.

Item No. - Number of the activity in the Quality Assurance Plan.

Activity - The various activities recognised in the Quality Assurance Plan.

Person Responsible at Supplier - Who is the person responsible at the Supplier for each of the valid activities.

Ready Latest
Required When - A, B, C, D, E are explained at bottom of Plan
Week No. - Actual Week Number planned

IPD Check Point - This relates to the Electrolux Integrated Product Development process. This is a "memory jogger" for Electrolux personnel only.

Approved Result to Electrolux - Where "Yes" is marked in the box, Electrolux expect to receive the finished article on the Week Number postulated.

Comments/Remarks - This is for extremely short remarks that any Project Leader deems necessary at any of the meetings between Suppliers and Electrolux.

Status - This is to show whether a particular activity is finished (completed) satisfactorily or not.